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The Earth Observing One satellite, launched in November 2000, is an active earth science 
observation platform. This paper reports on the progress of an infusion experiment in which 
the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, 
demonstrating the capability to monitor the nominsl operation of the spacecraft under 
command of an on-board planner, and demonstrating on-board diagnosis of spacecraft 
failures. Design and development of the experiment, specification and validation of 
diagnostic scenarios, characterization of performance results and benefits of the model- 
based approach are ‘presented. 

I. Introduction 
N this experiment, Livingstone is uploaded to the Earth Observing One (EO-1) satellite to conduct diagnostic I tests. EO-1 was developed and is operated by NASA Goddard Space Flight Center (GSFC). Livingstone is a 

diagnostic engine developed at NASA Ames Research Center (ARC) by the Model-Based Diagnosis and Recovery 
group. The original Livingstone flew on Deep Space 1 @S1) as part of the Remote Agent autonomy experiment 
0 in 1999 [2]. Since then, the group has created the next version of Livingstone, called Livingstone 2 62) .  As 
a technology infusion experiment, L2 and the spacecraft diagnostic models have been integrated with the 
Autonomous Sciencecraft Experiment (ME) [3]. ASE was developed by NASA Jet Propulsion Laboratory (JPL), 
and first ran on-board the EO-1 on September 20,2003. The autonomy software consists of the Continuous Activity 
Scheduling, Planning, Execution and Replanning (CASPER) planner; the science event detection software and the 
Spacecraft Command Language (SCL) ,  developed by Interface and Control Systems (ICs). S C L  provides an 
executive, a database and the software bridge to the spacecraft’s 1773 data bus. L2 provides a diagnosis component 
to ASE, which was not included before. 

A range of development and integration activities were undertaken to support the experiment. The major 
challenges encountered and their resolutions are discussed. Tasks include development of L2 models of the EO-1 
spacecraft and instrumentation, and failure scenario definition, based on knowledge acquired from GSFC. A Real- 
Time Interface @TI) and corresponding modeling methodology were developed to account for communication 
delays and physical transients in the system. L2, models of the spacecraft, and the RTI were integrated with SCL 
and the CASPER planner, first on a PowerPC embedded system and then on the EO-1’s ground test bed, a pair of M- 
5 processors with the Virtual Satellite (VSat) simulation system. Diagnostic scenarios were validated prior to upload 
on integrated system. System engineering of the overall autonomy software included allocation of VxWorks task 
priorities, S C L  software bus bandwidth, CPU and RAM resources. In early September 2004, the combined L2 and 
ASE software was uploaded to EO-1, and checkout procedures of the L2 software began. 
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11. Livingstone Diagnostic Technology 
The Livingstone algorithm and component-connection model are introduced here. A Livingstone diagnosis 

system consists of two main parts, a generalized inference engine and a domain-specific model. When Livingstone 
is deployed on different devices or vehicles, the inference engine does not change; only a new model needs to be 
developed. Livingstone uses a qualitative representation, propositional logic, to model the target system. The target 
system may be physical, such as the spacecraft hardware, or logical, such as the spacecraft software. The model is 
used to predict the states of system components given their initial state, commands which affect the system, and 
possible mode transitions. If there is a discrepancy between observed and predicted behavior, this generates conflicts 
in Livingstone's internal belief state. These conflicts are then used to focus the search for component modes 
(including failure modes), which are consistent with the observed state of the world and the possible mode 
transitions in the model. This process is known as conflict-directed best-first search. The set of component modes, 
which is found to satisfy the constraints expressed in the model, is termed the mode vector. 

A Livingstone component-connection model describes nominal and failure modes for components in terms of 
the propositional constraints that must hold in those modes. The connections are the constraints that must hold due 
to interactions between 'the components. Transitions between modes of a component are triggered by guard 
conditions such as commands, in a finite state machine representation. Constraints are expressed as discrete 
variable-value pairs, giving rise to a qualitative model. The real-valued sensor data must be transformed into 
qualitative data ("binned") by software called monitors before being used by Livingstone. For the failure modes, the 
likelihood of the failure is indicated by a rank, an approximation of the prior probability. The mode vector describes 
the overall state of the system. 

111. Architecture of the Diagnostic Experiment 
L2 was integrated with the Autonomous Sciencecraft Experiment software architecture and infrastructure, and 

uploaded to the WARP Mongoose-5 (M-5) processor on-board the EO-1 satellite. The experiment has the capability 
to process spacecraft telemetry and to downlink diagnostic health status telemetry for monitoring and display at the 
Mission Operations Center (MOC). The experiment architectur? and configuration is shown in Figure 1. 

Briefly, the CASPER planner generates high-level plan scripts and sends them to the SCL Executive that 
generates a sequence of commands to execute the plan. The SCL Software Bridge connects applications on the 
WARP-M5 processor to the 1773 spacecraft data bus for all telemetry processing, including decommutation of 
incoming telemetry frames and support for telemetry downlink. Incoming data may be stored in the Data 
Repository, with database triggers for notification of executed commands and received observations to subscriber 
processes such as L2. 
L2 performs diagnosis using a qualitative model of the target system to predict observations given the commands 
issued to the system, postulating diagnoses to explain discrepant observations. A diagnosis consists of a group of 
failure candidates, their constituent modes and the likelihood of each candidate. 
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Figure 1: Architecture of the L2 on EO-1 Experiment. 

IV. Livingstone Model Development 
An L2 model contains the device- or vehicle-specific information used in diagnosis. L2 models are created in a 

component-based manner: first components are defined, then connected together to create the overall system model. 
Components can also be contained in other components in the model, although internally L2 treats the model as flat. 

For speed considerations, L2 modeis are discrete. Variables can take a Siiiie niinber of vaiues siich as "low", 
"medium", and "high", and components can contain a finite number of modes such as "on", "off, "failedOn", and 
"failedoff". In these respects, an L2 model resembles a finite-state machine. The input commands are used as the 
guards enabling the system to switch modes. Each component mode specifies qualitative constraints between the 
internal variables and the vehicle telemetry. 

To perform diaposis, L2 uses the commands given to the system to indicate component mode changes. Using 
the constraints in the model, L2 generates the expected telemetry values of the new system mode and compares them 
to the actual telemetry values. If the expected values and the actual values disagree, L2 determines that a fault has 
occurred. It then searches the space of component fault modes to find those consistent with the current observations; 
a diagnosis containing the set of consistent component faults is returned. 

In general, the process of creating an L2 model has four steps: knowledge acquisition, scope definition, model 
creation, and model testing. In practice, these steps are often iterated before a model is complete. 

. 
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A. Knowledge Acquisition 
Knowledge acquisition is the process by which a modeler gathers information about a device or vehicle. It is 

usually the most time-consuming part of creating an L2 model. It simply takes time to understand the components 
cf :: vehicle and how th,ey behwe in nomA-na! ax! fm!t cofiditions, In addition, if a system is still in the design stage. 
the information to capture in a diagnosis model is in flux or may not exist. Usually several sources of information 
are used to gain the knowledge needed: design specifications, schematics and Failure Modes, Effects and Criticality 
Analysis (FMECA), and, if available, the system designers themselves. 

The forms of 
documentation mentioned above were used, as well as mission timelines and the EO-1 Spacecraft User’s Guide. 
EO-1 has been flying for several years, which makes knowledge acquisition easier: the satellite hardware is not 
changing, the documentation is more complete, and the engineers have years of experience operating the spacecraft. 

For EO-1, the models were created by the group at Ames, supported by the GSFC engineers. 

B. Scope Definition 
Determining the scope of an L2 model involves deciding which vehicle components and component faults to 

include in the model, and the level of detail in which to model them. The scope of the EO-1 L2 model is a subset of 
the spacecraft components most relevant to the science data collection sequence: the two imaging instruments, 
called the Hyperion and the Advanced Land Imager (ALI), and the data recording device, called the WARP. To 
ease the integration of LEO-1 with ASE, the model scope was chosen to require only a subset of the commands and 
telemetry already used by ASE. The telemetry values in use by ASE are mostly discrete “status bit” values. As a 
result, the EO-1 model is fairly high-level. More detailed models couId be developed with additional work and by 
incorporating additional telemetry values. 

C. Model Creation 
After gaining knowledge of the vehicle and deciding the scope of the model, the model creation begins. As 

mentioned previously, while most real systems exhibit continuous behavior, L2 models are discrete; the main 
challenge in creating a model is creating a discrete representation of the system useful for diagnosis. Given that 
most of the EO-1 telemetry observations used by the model are already discrete, creating a discrete representation 
was straightforward. 

The EO-1 model was created using L2’s graphical model creation tool, called Stanley. It contains the three 
main subsystems described above: the ALI, the Hyperion, and the WARP. 

The Hyperion model is shown in Figure 2 below. 
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Figure 2: L2 model of the Hyperion 

There are three components modeled in the Hyperion; the main aperture cover, which opens to image the earth, 
the aperture cover sensor, which measures the aperture cover's position, and the electronics assembly, containing the 
imaging electronics. The imgeDutu variable represents what type of image is being taken. It is set based on the 
modes of the electronicsAssembly and the apertureCover. NO-IMAGE if the electronicsAssembly is disabled, 
DARK-IMAGE is the electronics are enabled but the aperturecover is closed, and EARTHJMAGE if the aperture 
cover is open. 

The ALI model is shown in Figure 3: 
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Figure 3: L2 model of the ALI 

There are five components contained in the model of the ALI. First, the fiepower represents the focal plane 
electronics power, which must be enabled in order to take an image. The dataGate status indicates if an image is 
currently being acquired. The apertureCuver acts as the lens cap of the instrument; it is normally closed to protect 
the instrument and to take dark calibration images, and open when taking images of the earth. The 
mechanismf'ower component supplies power io hie apeitiiie coi;ei, allowiiig it to ;o~ve. Again, the imgeDctt2 
variable represents what type of image is being taken. It is assigned according to the modes of the fiepower, 
dataGate, and aperturecover: if the fiepower or dataGate is disabled, it is set to NO-IMAGE; otherwise, if the 
aperture cover is closed, it is set to DARK-IMAGE, and if the aperturecover is open it is set to EARTH-IMAGE. 
Finally, three of the sensors are modeled: the mechanismPowerSensor which reports the state of the mechanism 
power, and two light-emitting diode (LED) indicators, which indicate the state of the aperturecover. The multiple 
sensors surrounding the aperturecover were explicitly modeled (and allowed to fail) because the semi-redundant 
information will allow L2 to find multiple hypotheses when a single fault occurs in the subsystem, one of the key 
features demonstrated in the experiment. 

Finally, the WARP model is shown below: 

. -  ' I  
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Figure 4: L2 model of the WARP 

The WARP is modeled as two components, the WARP-HW and the WARP_SW. The WARP-HW models the 
device's hardware modes, and the WARP-SW modeis the software modes. As evidenced by the many connections 
between the two components, the hardware modes and software modes are closely related - not all combinations of 
modes are valid. 

D. Testing the Model 
Models can be tested directly in the Stanley GUI model development environment. Execution of the models 

involves L2 in a stand-alone mode. A diagnostic scenario, consisting of a sequence of commands and telemetry 
observations, exercises the model within Stanley. 

For testing the L2 model of the EO-1 satellite, the basic scenario is the same as the model's scope: the satellite's 
imaging timeline (data collection event). More specifically, the scenario is composed of the commands and 
~ ~ ~ i i i e i r y  03~rvations seni ta "le Ky-pcrioii, &I, and WARP. This squeiice is beefly desc&x? below: r-1- 

B 
3 Dark calibration image taken 
> 
9 Earthimagetaken 
9 
> 
9 
Seventeen Stanley scenarios were created in all, one representing the nominal data collection event, and one to 

test each of the fault modes in the L2 model. Each of the fault scenarios is based on the nominal scenario but with 
telemetry modified to inject the fault. 

Components set to image collection mode 

ALI and Hyperion aperture covers opened 

ALI and Hyperion aperture covers closed 
Dark calibration image taken again 
Components set to standby mode 
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V. Integration and Test on the EO-1 Test Beds 

A. Remote Testing on the Strings 
initiai testing was conducted on a PowerPC computer. Two tests were defined: test C and E. Test C was 

designed to test the integration of the L2 and SCL software components. Test D had the addition of CASPER and 
the Science software. Once these tests were completed, the testing was moved to the “flight” like hardware test beds. 
These test beds consist of three PCs, two M-5s, and communication hardware-which all together was called a 
string. Goddard was the keeper and maintainer of three such strings. Later, JPL took String 2 into their possession 
while Ames continued to work on String 1 and 3 at Goddard. 

A schematic is given below showing the different parts and how they connect. 

ASE Test Bed Environment 
- Ethernet load 

Figure 5: Test Bed Hardware Configuration 

The Linux machine runs the ground station software, called ASIST. It handles the communication to and from 
the satellite. COMSIM simulates the communication hardware that would be receiving commands and telemetry. 
It’s also is used to capture the serial output coming from the WARP so that it can be used for debugging purposes. 
COMSIM will also used to upload the software to the WARP via the Ethernet, which could also be done with 
another PC using TFI’P. The Star Coupler is the 1773 network hub in which all the test bed hardware communicates 
through to each other. The WARP M-5 processor is where the experimental software resides. The C&DH is the 
1773 Bus Controller (BC) and will talk to other 1773 Remote Terminals (RT), passing commands and receiving 
data. The VSAT Pro is a virtual satellite that simulates the satellite hardware, which consist of the satellite’s attitude, 
instruments, WARP remote service node, and power. 

B. Test Automation 
We developed the capability to perform automated testing. A scripting language called “Expect” was used in the 

automation of testing the L2 software on the M5 test bed at Goddard Space Flight Center (GSFC). “Expect” is an 
extension of the Tool Command Language (Tcl) and is used for automating user input to other applications. The 
name “Expect” comes from the idea of sendexpect sequences popularized by uucp, kermit and other modem control 
programs. 
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“Expect” automated everythmg from starting up the software on the M 5  test bed to running L2 to downloading 
the files and translating them into human-readable text. The only thing it was unable to do was to reboot the 
hardware; however, given time. this will eventually happen too as it already does this for the PowerPC test beds. 

Just about every single scenario tmk about three hours to complete and required over 2,000 keystroke entries; 
that’s no joke. With a three hour test, many things could go wrong. Automation of the test procedure eliminated the 
majority of things going wrong. 

C. CPUMetrics 
The VxWorks’ “spy’. utility was used to measure CPU utilization per task on the PowerPC only. This 

functionality is not supported on the M-5 strings, as these are veritable black boxes. A function was written to 
initialize the “spy” interrupt dock at loo0 ticks per second and to collect data at five second intervals. The task’s 
output was directed to a file on the PowerPC target. Upon completion of the test, the report file was downloaded to 
the host computer and parsed with a Tcl script to extract the individual tasks’ CPU usage data and save it to a 
Microsoft Excel file. 

The data collected represented the number of ‘ticks’ each task executed, out of the IO00 possible samples per 
five seconds. This was then turned into a percentage of CPU time for each task. 

VI. Test Results 

A. L2UnitTests 

below. A screenshot from Stanley showing a diagnosis result is given below: 
In the L2 unit tests, the diagnosis from L2 is summarized graphically in the visualization tool Stanley, shown 

I - 1 1  ali aperturecover= stu ck Closed 
ali.1 ed #9=un kn own Fau It 

Ill i4 2 i ali-1 ed #€I= u n k n own Fau It 
’ 2 1  - 

Figure 6: Screenshot of L2 unit test diagnosis 

The relevant information in the table is that there are 2 candidates in the diagnosis of this fault. Each candidate 
is a possible explanation of the current observations. The first candidate contains a single fault, that the ALI’s 
aperture cover is stuck closed. The second candidate contains two faults, that both of the LED sensors have failed. 
Each candidate is a possibility, according to the observations, but the single-fault candidate is more likely to have 
occurred (as indicated by the lower number in the “Rank” column. Here, the two LED sensors were measuring the 
position of the aperture cover. Hence, L2’s diagnosis is that either the aperture cover is stuckClosed, or both of the 
sensors measuring the cover position have failed. This split of “component failed or sensors failed” is a common 
result when using L2. 

The results for the all of the L2 unit tests are given in Table 1. The criterion for success is as follows: 

1) The diagnosis contains the iniected fault as a candidate 
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ali.dataGate=unknownFault 
ali.mechanismPower=failedDisabled 
ali.mechanismPowerSensor=unknownFault 
ali.mechanismPower=failedEnabled 

2) 

As we see from the table, the L2 unit tests completed successfully for all scenarios. 

All other candidates in the diagnosis are also possible given the commands and observations 

Yes 

Yes 

Table 1: L2 unit test results 

ali.mechanismPowerSensor=unknownFault 
ali.apertureCover=failedClosed 
ali.led08=unknownFault 

I 

Yes 

Yes 

Scenario ID 

ali.apertureCover=failedOpen 
ali.led08=unkno wnFault 

eo 1 Nominal 
eo 1DualNominal 

eo lFSO 1-AliDataGateFailedDisabled 

eo 1FS02-AliDataGateFailedEnabled 

Yes 

eo 1FS03-AliMechanismPowerFailedDisabled 

ali.led09=unkno wnFault 
ali.led08=unkno wnFault 

eo 1 FSOS-AliMechanismPo werSensorFai led 

Yes 
Yes 

eo 1 FS06~AliApertureCoverFailedClosed c eo 1FSO7-Ali ApertureCoverFailedOpen 

h yperion.apertureCover=failedOpen 

eo 1FS08-AliApertureCoverFailedIntermediate 

eo 1 FSOg AliLed09Failed 

Yes 

eo 1FS2 1-Hyperion ApertureCoverFailedClosed 

h yperion.electronicsAssemb1 y=error 

eo 1FS24-Hyperion ApertureCoverSensorFailed 

Yes 

Final Diagnosis 
Candidate(s) and Component Fault(s) 

Yes 
nnne Yes 

~~ 

h yperion.apertureCover=failedOpen 

Yes ali.dataGate=failedDisabled 
ali.dataGate=unknowSault 

YCS 

Final Diagnosis 
Candidate(s) and Component Fault(s) Scenario ID 

eolNomina1 none 

E 
.3 

Yes 

ali.led09=unknownFault 
ali.apertureCover=failedIntermediate 
ali.led08=unknownFault Yes 

Yes hyperion.apertureCover=failedClosed 
h yperion.apertureCoverSensor=unknownFault 

warp. software=unknownFault I Yes 

B. Integrated Tests 
The diagnosis output of the integrated tests on the ASE test bed environment is stored in text files. The same 

output will be used onboard the EO-1, and the text files will be compressed and downlinked to ground for analysis. 
The results of the integrated tests are given below in Table 2. 
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eo 1 DualNominal 
eo 1FSOl-AtiDataGateFailedDisabled 

none I Yes 
none I No 

eo 1 FS03_AliMechanismPowerFailedDisabled 

ali.dataGate=unkno wnFault 
a l i .mechanismPower=f~l~i~bled  
ali .mechanismPowerSensor=uuknownFault Yes 

eo lFS04-~echanisrnPowerFailedEnabled 

eo 1 F S O 5 ~ ~ ~ ~ s ~ o w e r S e n s o r F a i l e d  

eo lFSO6-AUpertmeCbverFailaiClosed 

In the integrated test, 16 out of 17 scenarios completed successfully. The reason that FSOl failed the test is due to 
timing latencies of the actual system. The ALI data gate is commanded enabled, but commanded disabled again 
before the "enabled" telemetry was received. Therefore, there is no difference to L2 whether the commands 
succeeded or the component failed. L2 assumes no faults exist until evidence to the contrary is received, in this case 
that assumption results in a missed diagnosis for FSO1. 

Some other minor differences in the results also exist. For FSO6, we have a different double-fault candidate. 
This candidate is as likely as the one found in the L2 unit test. Because of CPU restrictions, L2 is restricted from 
exhausting all possible candidates. Here, it simply found this double-fault candidate first. If L2 was not limited by 
CPU, it would have returned both double-fault candidates (for a total of 3 candidates) in both the unit test and the 
integrated test. 

Yes ali.mechanismPowerSensor=unknownFault 
ali.mechanismPower=failedFhabled 
ali.mechanismPo werSenso~unlmownFault Yes 
ali.apertureCover=failedClosed 
ali.led08=unknownFault YeS 

MI. Conclusion 

eo 1FS08-AMpertweCoverFailedIntermediate 

eo lFSW_AIiLedO!9Failed 
eo 1FS 1 O-AliLed08Failed 

Over the past year, the project has gone from initiation to deployment on-board a spacecraft. Models of the 
satellite were developed from scratch and diagnostic scenarios validated on a series of test beds of increasing 
fidelity. A new Real-Time Interface and transient modeling methodology was employed to enable the software to 
run on a real-world system. We learned about the Satellite, about operations procedures, and how to coax delicate 
hardware and h w a r e  systems into a working state. The L2 software has been uploaded to the satellite and tests are 
about to begin. 

Much work lies ahead. A future paper will report on results of the on-board validation tests. Further important 
work remains on implementing recovery once a diagnosis is made. The models could be extended significantly, and 
performance improvements can be made. We believe that this work will significantly contribute to the maturation of 
model-based diagnosis and improve the chances for adoption of this helpful technology for many missions and 
applications. 

' Yes ali.apertureCover=failedIntermediate 
ali.led08=unknownFault 
ali.ledO9=unknownFault Yes 
ali.ledOS=unknownFault Yes 
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eo lFS35-WarpFailedToRecord 

hyperion.apertureCover=failedOpen Yes h y p e r i o n . a p e r t u r e C o v e r S e n s ~ ~ ~ a u l t  
warp.software=unknownFault Yes 
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